

Werner Rothengatter

Karlsruhe Institute of Technology

- Objectives formulated by UNECE and ILO
- Integrated assessment methods (IAMs)
- E3ME and application to clean car strategy in Germany
- EXIOBASE as a favoured model by UNECE/ILO
- Needs of IAMs for capturing the impacts of industrial transformation

Objectives formulated by UNECE and ILO

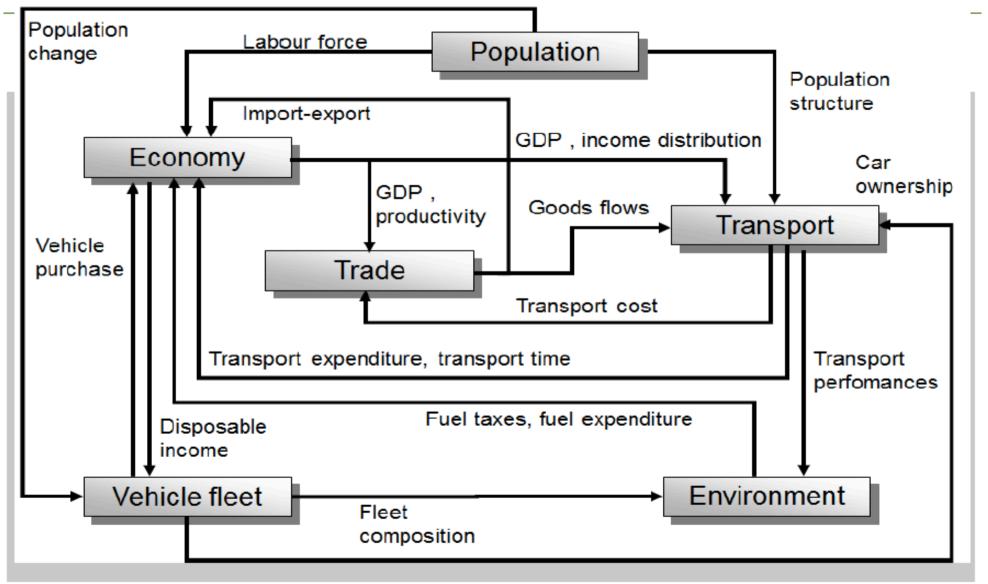
- Improve transport efficiency
- Reduce energy consumption, air, noise pollution, GHG emissions
- Increase safety and health
- Preserve job opportunities facing rapid industrial transformations

- Objectives formulated by UNECE and ILO
- Integrated assessment methods (IAMs)
- E3ME and application to clean car strategy in Germany
- **EXIOBASE** as a favoured model by UNECE/ILO
- Needs of IAMs for capturing the impacts of industrial transformation

Assessment Methods

- Cost-benefit analysis and SCGEs (welfare measurement, resource savings, productivity effects through migration of factors)
- Wider economic impact (WEI): Measurement of GDP and employment effects; productivity, terms of trade and multiplier effects)
- Integrated assessment models: WEI plus technology, plus energy, plus environment/climate

Integrated assessment models

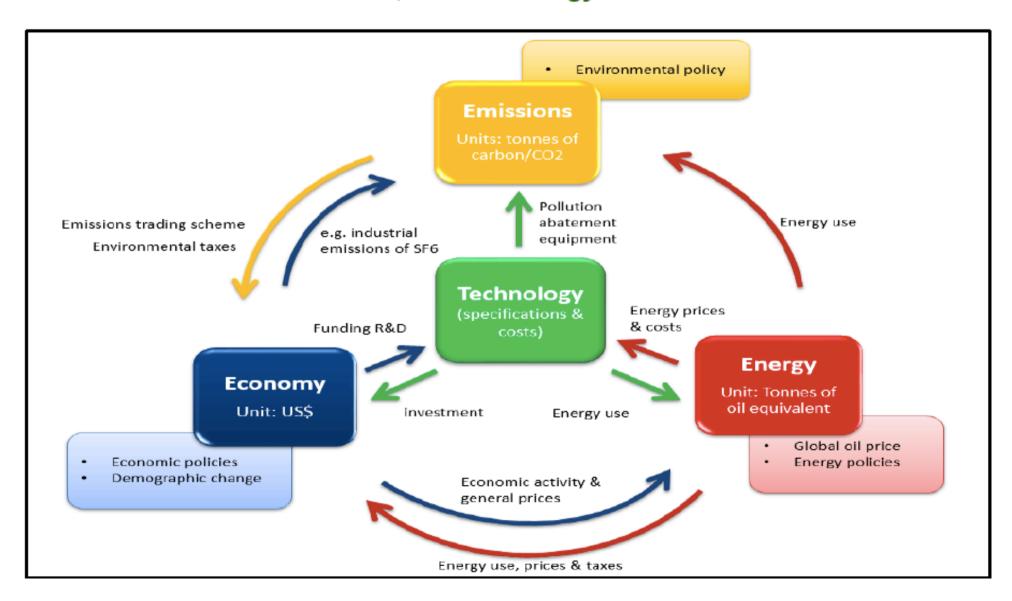


- Spatial computed general equilibrium models (SCGE)
- System dynamics models
- Combined econometric, Input-Output, technology, energy, environment mod.
- Multi-regional multi-sector Input-Output modelling

Linked modules in ASTRA

Source: TRT - Fraunhofer-ISI

- Objectives formulated by UNECE and ILO
- Integrated assessment methods (IAMs)
- E3ME and application to clean car strategy in Germany
- **EXIOBASE** as a favoured model by UNECE/ILO
- Needs of IAMs for capturing the impacts of industrial transformation



ECON

Low carbon cars in Germany

Study for CEF prep. by Cambridge Econ.,

m-five, element energy

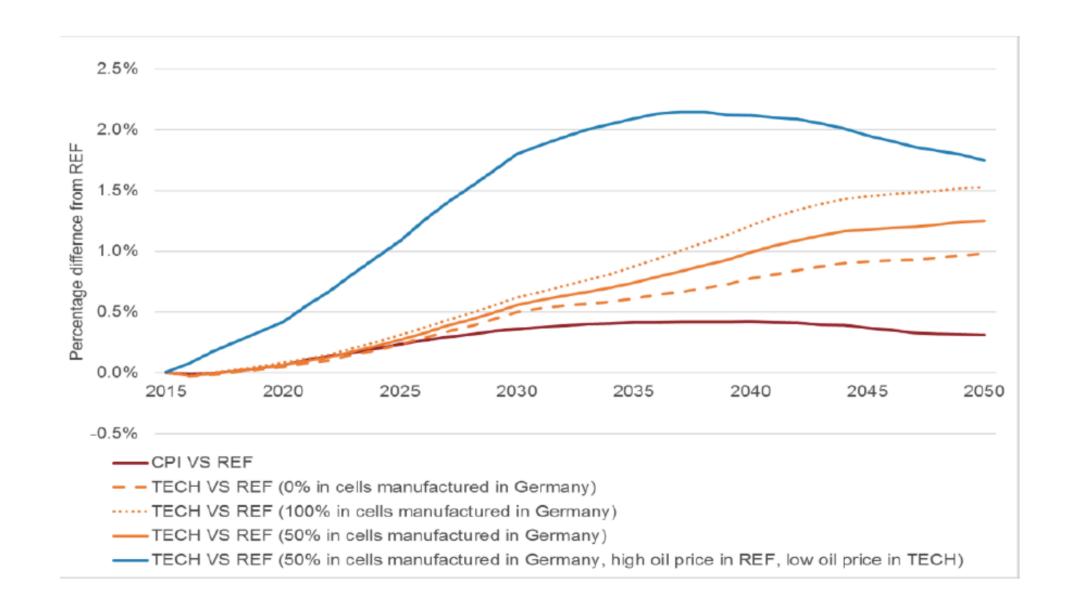
E3ME Basic features

- Geographical coverage: EU countries, 3 candidates, Norway, Switzerland, 11 other major economies, rest of the world: 53 regions (43 non-EU)
- Industries (IO): 69
- Calibration period: 1970-2012
- Solution periods: 1995-2050
- Economic philosophy: Keynesian (demand driven)
- Basic economic model: econometric equations
- Structural changes: driven by endogenous growth, related to R&D activity

Clean cars Germany Scenarios

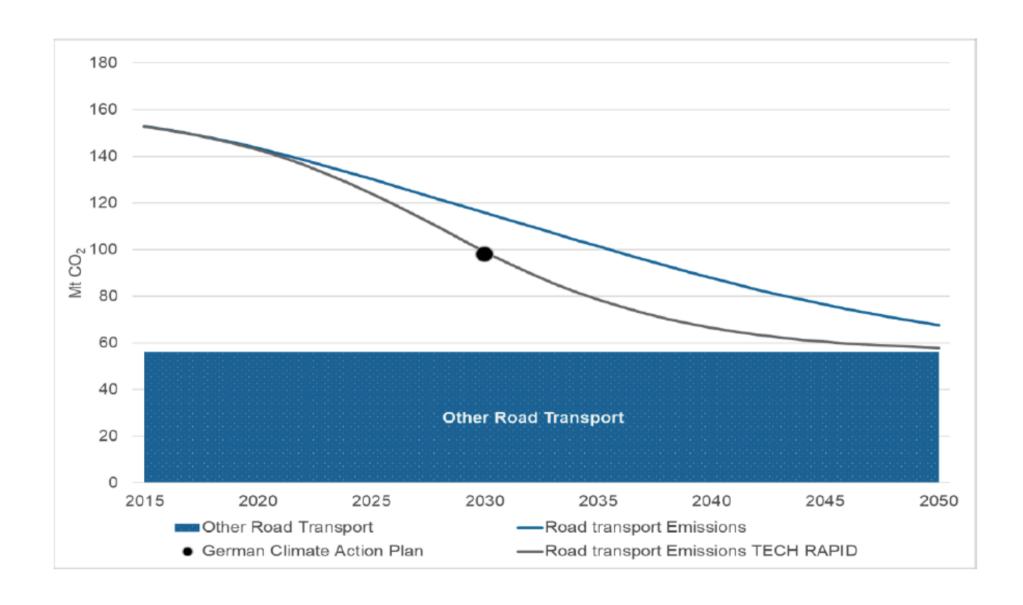
- Reference
- Current policy
- Technology (with variants)
- Technology rapid

Clean cars Germany Tech. Rapid Scenario results

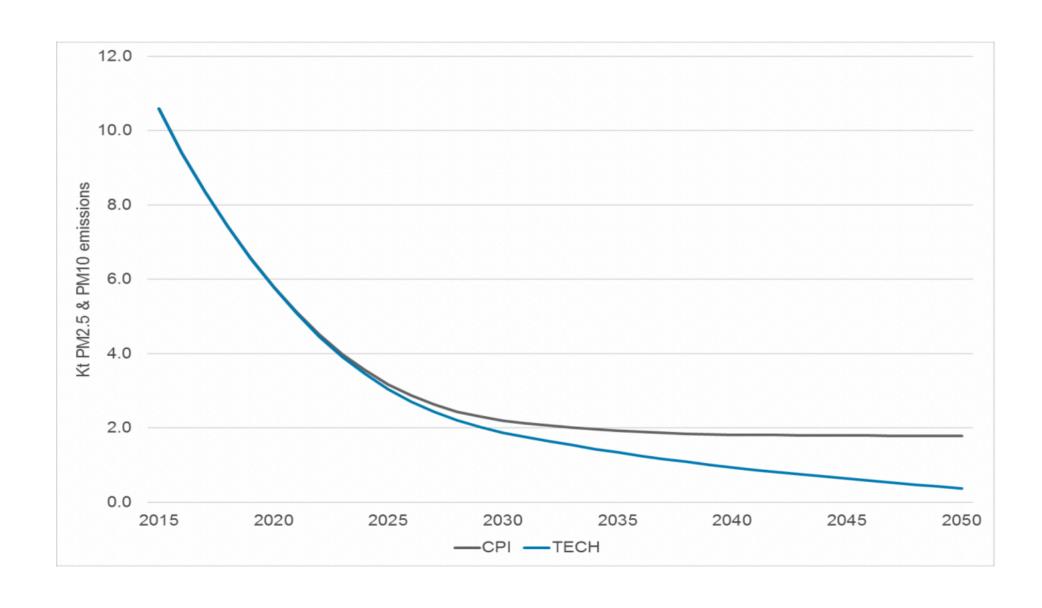


- By 2040 86% advanced powertrains
- By 2030 40% less oil demand, by 2050 90% compared to 2015
- By 2050 plus 8% electricity demand
- Cost reductions and extended ranges for BEV

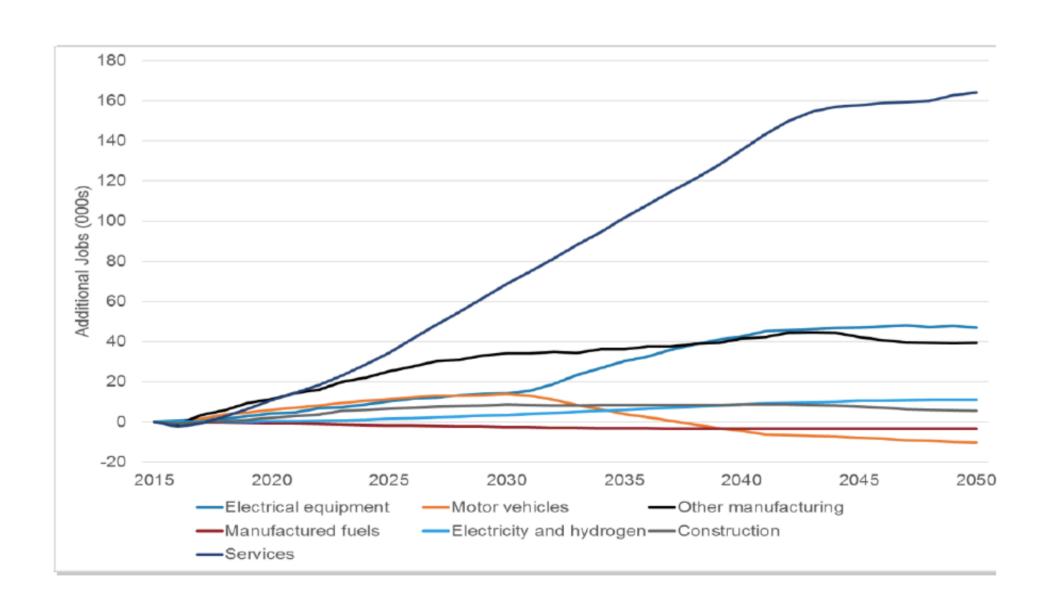
Economic impacts % difference from REF



CO₂ Impacts Tech RAPID



Impacts on PM Emissions



Employment impacts

- Objectives formulated by UNECE and ILO
- Integrated assessment methods (IAMs)
- E3ME and application to clean car strategy in Germany
- EXIOBASE as a favoured model by UNECE/ILO
- Needs of IAMs for capturing the impacts of industrial transformation

Extension from IO to SAM matrices

$$a_{ij} = x_{ij} / X_{j}$$

$$AX + Y = X$$

$$\Delta X = [E - A]^{-1} \Delta Y$$

$$B = \{b_{ij}\} = [E - A]^{-1}$$

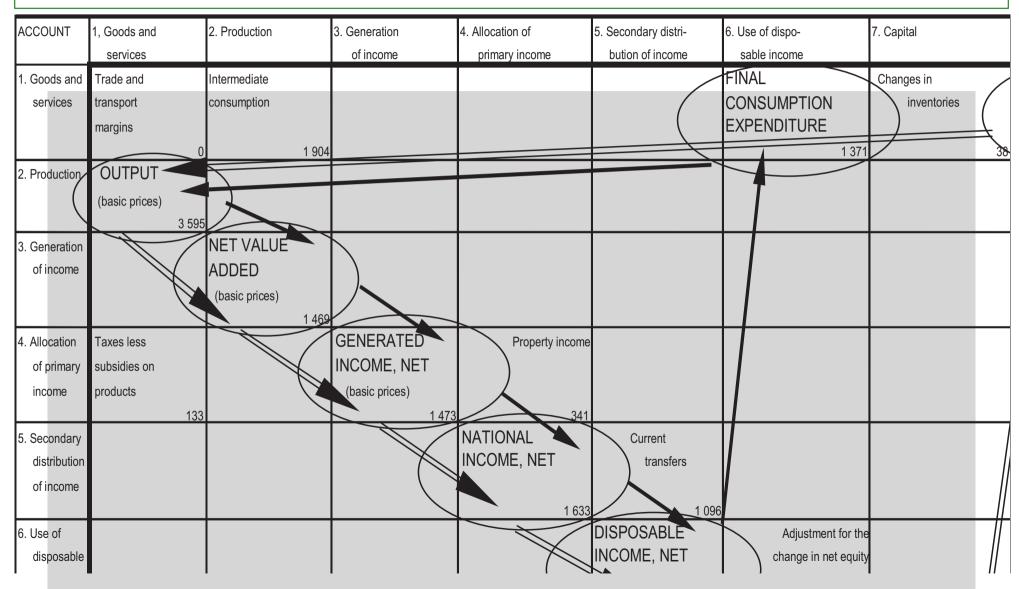
Leontief Multiplier

Extension from IO to SAM matrices

			EXPENDITURES						
				ENDOGENOUS			EXOGENOUS		
			FACTORS	HOUSEHOLDS	PRODUCTIVE ACTIVITIES	GOVERNMENT	REST OF THE WORLD	CAPITAL ACCOUNT	
ES	ENDO- GENOUS	FACTORS	0	0	T ₁₃	X ₁₄	X ₁₅	X ₁₆	Yı
OM		HOUSEHOLDS	T ₂₁	T ₂₂	0	X ₂₄	X ₂₅	X ₂₆	Y ₂
OR INCOMES		PRODUCT ACTIVITY	0	T ₃₂	T ₃₃	X ₃₄	X ₃₅	X ₃₆	Y ₃
	EXO- GENOUS	GOVERNMENT	L ₄₁	L ₄₂	L ₄₃	t ₄₄	t ₄₅	t ₄₆	Y_4
RECEIPTS		REST OF WORLD	L ₅₁	L ₅₂	L ₅₃	t ₅₄	t ₅₅	t ₅₆	Y ₅
		CAPITAL ACCOUNTS	L ₆₁	L ₆₂	L ₆₃	t ₄₄	t ₄₅	t ₄₆	Y ₆
RE	TOTALS		Yı	Y ₂	Y ₃	Y4	Y ₅	Y ₆	

SAM multiplier

$$M^S = [E - M]^{-1}$$


M^S: SAM multiplier

M: expenditure shares

Table 2.9: Aggregate National Accounts Matrix showing the Circular Flow of Income for a Closed Economy

EXIOBASE 3 MRIO

- Time series 1995-2011
- Multiple social and environmental satellite accounts
- 44 countries (28 EU) plus 5 for rest of the world
- Rectangular supply/use tables for 163 industries and 200 products
- Energy accounts: 60 primary and secondary energy products
- Emissions: 27 pollutants from combustion processes
- Further accounts: water, material, land, waste, labour

EXIOBASE 3 EE MRIO

Karlsruher Institut für Technologie	EXIOBASE 1	EXIOBASE 2	EXIOBASE 3
Base-year(s)	2000	2007	1995–2011
Products	129	200	200
ndustries	129	163	163
Countries ^a	43	43	44
RoW ^b regions	1	5	5
Emissions			
Combustion	26	26	27
Noncombustion		11	27
HFC/PFC/SF6		3	3
N/P/SOx from waste			5
N/P from agriculture			7
Water accounts (per activity)			
Green	47	172	194
Blue	47	172	194
Material accounts			
Energy products ^c	69	69	69 ^d
Extraction (used/unused)	48/48	48/48	222/222
Land accounts	14	15	15 ^e
Employment accounts	6 ^f	6 ^f	14 ^g

EXIOBASE 3

- IO and SUT
- Product by product tables
- Industry by industry tables
- 14 GB RAM for the time series 1995-2011

Assumptions for IO and SAM

- Production functions are linear and limitational.
- Production and expenditure coefficients are fixed over time.
- Industrial sectors are homogenous and not changed over time.
- There are no temporary limits or supply restrictions.
- There is no time dimension, no driver of growth, no innovation or technical progress.

Use of EXIOBASE for IAM

- Forward looking through macro-economic scenarios
- Changes of technology and demand to be introduced exogeneously
- Example: EXIOBASE+TIMES+REMES (NTNU)

- Objectives formulated by UNECE and ILO
- Integrated assessment methods (IAMs)
- E3ME and application to clean car strategy in Germany
- **EXIOBASE** as a favoured model by UNECE/ILO
- Needs of IAMs for capturing the impacts of industrial transformation

- General question: which degree of disaggregation?
- Ex post analysis, short-term forecast, long-term forecast
- Main forecasting issues outside of IO and SAM
- Structural changes to be modelled by other approaches

Werner Rothengatter Karlsruhe Institute of Technology

rothengatter@kit.edu