

The effects of parking cash-out on individual mode choice behavior

Christos Evangelinos International University of Applied Sciences Bad Honnef · Bonn

Common work with:

Stefan Tscharaktschiew: Dresden University of Technology Edoardo Marcucci: Universita degli Studi di Roma Tre

> Konferenz "Verkehrsökonomik und –politik" Berlin, 11.-12. Juni, 2015

Agenda

- Employer paid parking: the problems
- Parking cash-out as an alternative?
- Modeling travel behavior for cash-out
 - Data
 - Models and estimation results
 - A model with only car users
 - Comparison: response measures linear and nonlinear models
- Discussion and conclusions

Employer paid parking: The problems

- Distortion of relative prices
 - preferential treatment of private cars (Shoup 1997, Arnott et al. 1991, Small 1997, Wilson 1991)
- Welfare losses due to taxation
 - \$36 Billions for USA (Shoup 1997)
 - € 5 Billions for EU/ \$ 30 Billions for USA (Van Ommeren & Wentink 2011)

Parking Cash-Out as an Alternative?

- A proposal by Shoup (1992)
 - Cash-Out: Commuters are monetary rewarded for loosing their right of a parking space at work
 - In case of traveling by car: parking charges
- Existing literature: change of travel behavior
 - Descriptive (Shoup 1997, Enoch 2002, Waters et al. 2006)
 - Analytic (De Borger & Wuyts 2009)
- However: No existence of "classical" mode-choice models
- Theoretically: The effect of cash-out programs will depend on individual preferences

Parking Cash-Out as an Alternative?

Modal choice if commuters are compensated

Implies utility maximization for individual t: *if* $U_{it} > U_{jt} \Rightarrow i \succ j, \forall j \in J.$

Probabilistic model:
$$U_{it} = V_{it} + \mathcal{E}_{it}$$

Assuming iid and extrem valued distributed \mathcal{E}_{it} derives the well known MNL choice probabilities

$$P(i) = \frac{e^{V_i}}{\sum_i e^{V_j}}$$

Modeling Parking Cash-Out

- Data
 - 681 commuters in an survey in Dresden Germany → employer paid parking
 - First stage: revealed mode choice and general individual information
 - Second stage: Scenario on parking cash-out
 - Cash-out level randomized (between € 1 and € 5 per day in 10Ct steps) → new choice

Model specification:

$$\begin{split} V_{car,t} &= 0 + \beta_{TT} \cdot TT_{car} + \beta_{TC} \cdot TC_{car} + \beta_{pc} \cdot PC + \dots \\ V_{SR,t} &= ASC_{SR-car} + \beta_{TT} \cdot TT_{SR} + \beta_{TC} \cdot TC_{SR} + \dots \\ V_{PT,t} &= ASC_{PT-car} + \beta_{TT} \cdot TT_{PT} + \beta_{TC} \cdot TC_{PT} + \dots \\ V_{cycle,t} &= ASC_{cycle-car} + \beta_{TT} \cdot TT_{cycle} + \beta_{TC} \cdot TC_{cycle} + \dots \\ V_{foot,t} &= ASC_{foot-car} + \beta_{TT} \cdot TT_{foot} + \beta_{TC} \cdot TC_{foot} + \dots \end{split}$$

Modeling Parking Cash-Out: Results

Variable	Estimate M1	Estimate M2	Estimate M3	Estimate M4 (only car drivers)
Travel time				
In vehicle (motorized modes)	-0.0488***		-0.0449***	
(non-motorized modes) Private car Share ride Public transit Cycle On foot	-0.112***	-0.055*** -0.054*** -0.050*** -0.113*** -0.164***	-0.115***	-0.037* -0.039 -0.031** -0.100*** -0.097
Out of vehicle	-0.0313***	-0.034***	-0.032***	-0.025
Travel costs	-0.266***	-0.263***	-0.266***	-0.147*
Cash-out (private car) Log (cash-out)	-0.254***	-0.259***	-0.705***	-0.409***
Job Ticket (public transport)	0.673***	0.691***	0.670***	0.444
Adjusted R-square	0.218	0.207	0.217	0.379

Modeling Parking Cash-Out

Compute Elasticities of car use: M1

Modeling Parking Cash-Out

Compute Elasticities: M3

Main results:

- Elasticities between travel costs and cash-out are very similar → Cash-Out could possibly derive similar results to increasing travel costs (M1)
- 2. Elasticities differ at different charging levels: For lower charging levels parking cash-out performs better in terms of mode choice probabilities. For higher ones, increasing travel costs derive better results (M3).

Conclusions and Discussion

- Possible advantages
 - Acceptability: Insights from tolling literature suggest the need for a kind of "compensation"
 - Use of revenues out of road pricing (Marcucci et al., 2005; De Borger/Proost, 2011; Oberholzer-Gee/Weck-Hannemann, 2002)
- Recently: Removal of parking charges as a compensation for road pricing (Bonsall/Young, 2010)
 - But: political distortions may still exist
- Acceptability for parking charges seems to be higher than road pricing (e.g. Albrecht & Mahalel 2006)
 - In line with Zajac's (1995) principles of fairness
- In addition: Possibly even higher acceptability for parking cash-out.
 Political and psychological distortions may be even lower for cash-out.

Thank you for Attention