Konferenz "Verkehrsökonomik und –politik", Berlin, 26./27. Juni 2013

Der soziale Diskont in Nutzen-Kosten-Analysen für Verkehrsinvestitionen

Werner Rothengatter, Axel Schaffer, Sebastian Brun

Struktur

- Bedeutung des sozialen Diskonts für Verkehrsinvestitionen
- Ableitung des sozialen Diskonts nach Ramsey
- Ableitung des sozialen Diskonts unter Berücksichtigung des Produktionssektors und erschöpfbarer Ressourcen
- Modellergebnisse
- Fazit

Bedeutung des sozialen Diskonts für Verkehrsinvestitionen

- Beurteilung öffentlicher Verkehrsprojekte durch Nutzen-Kosten-Analysen
- Langfristige Nutzung (von mitunter mehr als 80 Jahren) erfordert Berücksichtigung zukünftiger Nutzen
- Positive Bewertung, falls gilt:
 abdiskontierter aufsummierter zukünftiger Nutzen > (heutige) Kosten

Wahl des sozialen Diskonts kommt bei hoher Lebensdauer Schlüsselrolle bei der Bewertung von Verkehrsprojekten zu

Wahl des sozialen Diskonts in Europa

	Soziale Diskontrate	Zeithorizont
Deutschland	< 3%	abhängig von Lebensdauer
	risk free	
Frankreich	default 4,5%	bis 2070
	2,5% risk free	
	2,0% risk premium	
UK	3,5%	<30 Jahre
	3,0%	31-75 Jahre
	2,5%	>75 Jahre
Niederlande	4,0%	30 Jahre
Schweden	3,50%	40 Jahre

Zusätzlicher Aufschlag aufgrund möglicher crowding-out Effekte von privatem Kapital durch öffentliche Finanzierung

Ableitung des sozialen Diskonts nach Ramsey

Diskontierungsrate ρ nach Ramsey (1928)

$$\rho = g \eta + \delta$$

ρ: soziale Diskontierungsrate

g: Wachstumsrate des Konsums (getrieben durch Fertilität der Technologie)

η: Elastizität des Grenznutzens des Konsums

δ: Zeitpräferenzrate

Empirische Anwendungen

g: Bestimmt durch die Veränderungsrate des Konsums

η: 0,5 bis 2,5

δ: 0 bis 0,03

ρ: 0,02 bis 0,06

Ableitung des sozialen Diskonts unter Berücksichtigung des Produktionssektors und erschöpfbarer Ressourcen

Idee

Diskontrate ist nicht nur von normativen Diskontierungsparametern η und δ abhängig, sondern auch von der Produktionstechnologie

$$Y_{t} = F(K_{t}, L_{t}, R_{t}, t) = A * K_{t}^{\alpha_{1}} * L_{t}^{\alpha_{2}} * R_{t}^{\alpha_{3}} * e^{\lambda * t}$$

 Maximierung der Wohlfahrt über materiellen Konsum (C) und Bestand an erschöpfbaren Ressourcen (S) (abhängig vom Ressourcenverbrauch R)

$$W(C_t) = \int_0^\infty u(C_t, S_t) * e^{-\delta * t} dt \qquad S_t = S_0 - \int_0^t R_\tau d\tau$$

■ Die Gewichtung erfolgt anhand des Parameters β (Ressourcen) bzw. 1- β (materieller Konsum).

$$u(C_t, S_t) = -C^{-(\eta-1)*(1-\beta)} * S^{-(\eta-1)*\beta}$$

Ableitung des sozialen Diskonts unter Berücksichtigung des Produktionssektors und erschöpfbarer Ressourcen

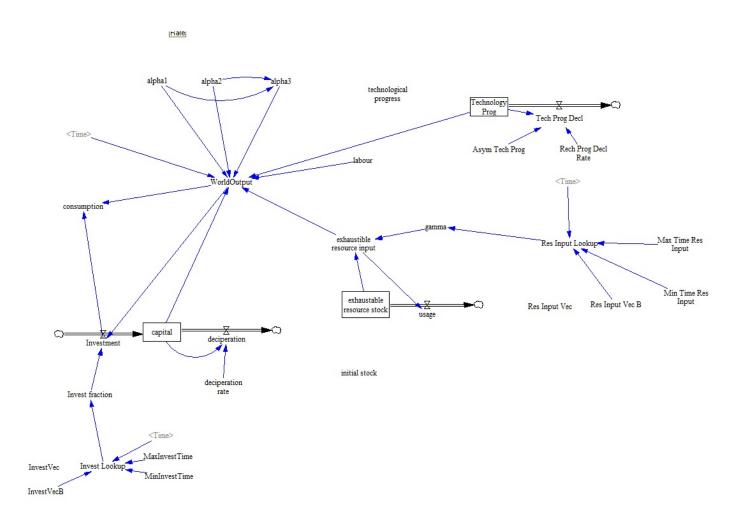
Idee

Veränderung des Kapital- bzw. Ressourcenstocks über die Zeit

$$\dot{K}_t = F(K_t, L_t, R_t, t) - C_t \qquad \dot{S}_t = -R_t$$

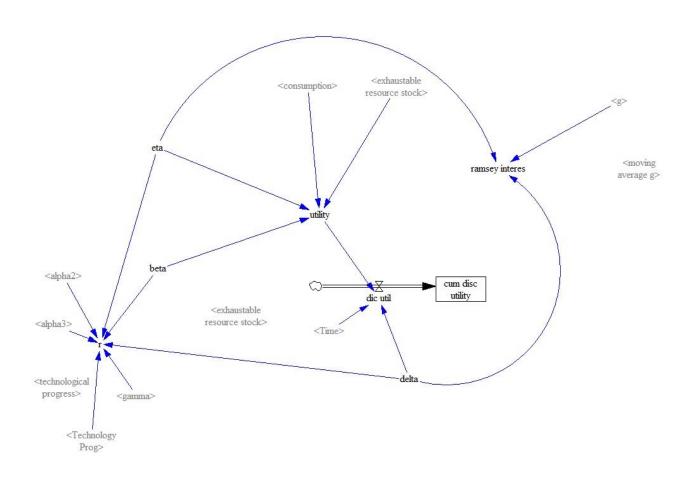
Sozialer Diskont abgeleitet aus der Ableitung nach K

$$\frac{\partial F}{\partial K} = r = \frac{\alpha_2 * (\delta - \beta * (\eta - 1) * \gamma_{\infty}) + (1 + (1 - \beta) * (\eta - 1)) * \lambda}{\alpha_2 + \alpha_3 * (1 + (1 - \beta) * (\eta - 1))}$$

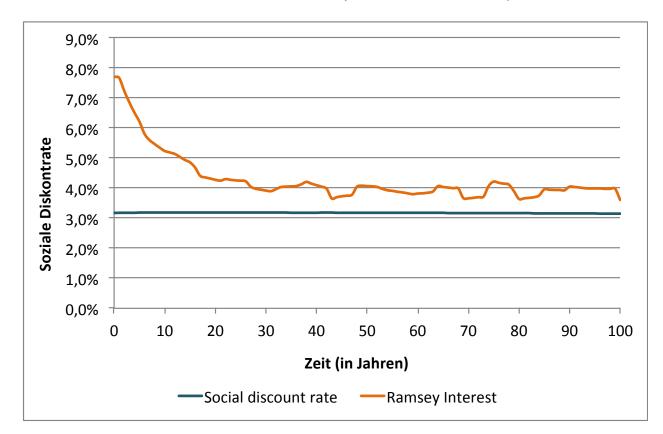

mit: Produktionselastizitäten: α_i (mit α_1 = 1- α_2 - α_3) ethische Parameter (entsprechend Ramsey): η , δ Rate des technologischen Fortschritts: λ Abbaurate der erschöpfbaren Ressourcen (endogen): γ Präferenzparameter für erschöpfbare Ressourcen: β

Modellaufbau in System Dynamics

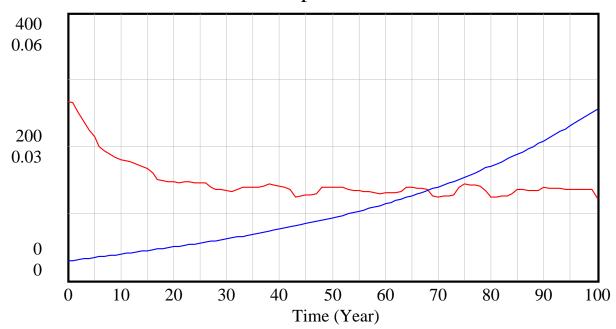
- Zur Simulation und Optimierung wurde das beschriebene Modell wurde in System Dynamics abgebildet
- Stocks für Kapital und erschöpfbare Ressourcen
- Optimierungsparameter:
 - Investitionsrate für den Kapitalstock
 - Abbaurate für erschöpfbare Ressourcen
- Optimierungsziel: Nutzen aus Konsum unitaristisch maximieren
- Entsprechend der dargelegten Berechnungsweise wird der Verlauf der sozialen Diskontsätze berechnet.


Modellaufbau in System Dynamics

Ökonomiemodell mit Stocks und Feedback Effekten.


Modellaufbau in System Dynamics

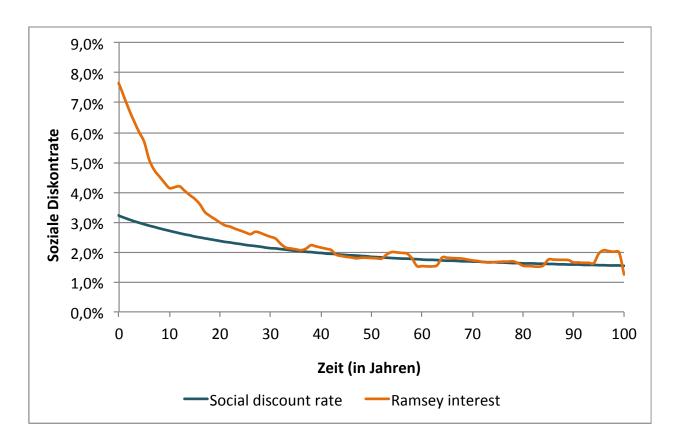
Wohlfahrtsoptimierung und Berechnung der sozialen Diskontraten


Variante 1

- **Nonstante Produktionselastizitäten** α_{K} : 0,35, α_{I} : 0,045, α_{R} : 0,02
- Konstanter technologische Fortschrittsrate λ: 0,015
- Konstante Präferenzrate für erschöpfbare Ressourcen β: 0,2

- Variante 1
 - Konstante Produktionselastizitäten α_{K} : 0,35, α_{L} : 0,045, α_{R} : 0,02
 - Nonstanter technologische Fortschrittsrate λ : 0,015
 - Nonstante Präferenzrate für erschöpfbare Ressourcen β: 0,2

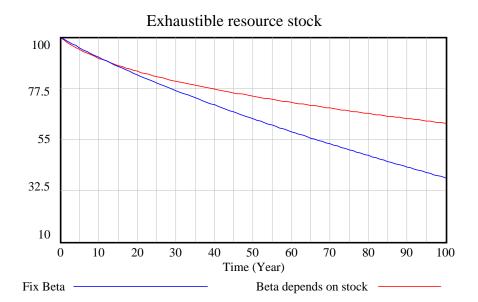
Consumption Var 1

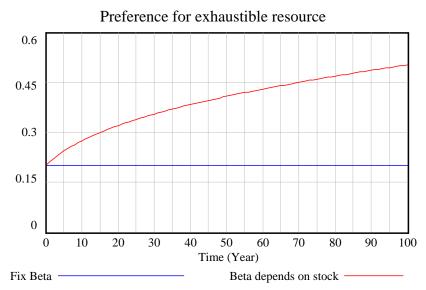


Consumption – Rate of change

Variante 2

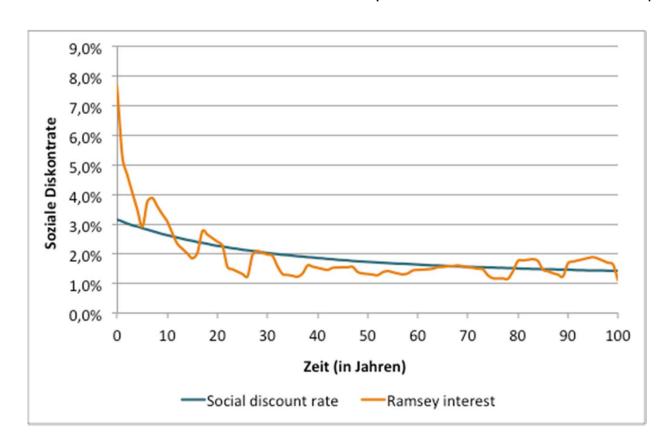
- Nonstante Produktionselastizitäten α_{K} : 0,35, α_{L} : 0,045, α_{R} : 0,02
- Absinken der technologischen Fortschrittsrate λ: 0,015


 0,0075
- Konstante Präferenzrate für erschöpfbare Ressourcen β: 0,2



Variante 3

- Nonstante Produktionselastizitäten α_{K} : 0,35, α_{I} : 0,045, α_{R} : 0,02
- Absinken der technologischen Fortschrittsrate λ: 0,015


 0,0075
- Zunahme der Präferenzrate für erschöpfbare Ressourcen mit Startwert β: 0,2

- Variante 3
 - Nonstante Produktionselastizitäten α_{K} : 0,35, α_{I} : 0,045, α_{R} : 0,02
 - Absinken der technologischen Fortschrittsrate λ: 0,015

 0,0075
 - Zunahme der Präferenzrate für erschöpfbare Ressourcen mit Startwert β: 0,2

Fazit

- Absinken der Diskontrate in Übereinstimmung mit anderen Studien (insbesondere Weitzman 1994, 1998)
- Anpassung der Raten über die Zeit (Wachstum des pro-Kopf Konsums im steady state getrieben durch technologischen Fortschritt)
- Kein Zuschlag